Abstract

Excessive use of pesticides in agricultural fields is a matter of great concern for living beings as well as the environment across the world, in particular, the third world countries. Therefore, there is an urgent need to find out an effective way to degrade these hazardous chemicals from the soil in an environment-friendly way. In the current project, a bacterial species were isolated through enrichment culture from carbofuran-supplemented rice-field soil and identified as a carbofuran degrader. The rate of carbofuran degradation by this bacterial species was evaluated using reverse-phase high-performance liquid chromatography (RP-HPLC), which confirmed the ability to utilize as a carbon source up to 4 µg/ml of 99% technical grade carbofuran. The morphological, physiological, biochemical characteristics and phylogenetic analysis of the 16S rRNA sequence showed that this strain belongs to the genus of Enterobacter sp. (sequence accession number LC368285 in DDBJ), and the optimum growth condition for the isolated strain was 37°C at pH 7.0. Moreover, an antibiotic sensitivity test showed that it was susceptible to azithromycin, penicillin, ceftazidime, ciprofloxacin, and gentamycin, and the minimal inhibitory concentration value of gentamycin was 400 μg/ml against the bacteria. It shows beyond doubt from the RP-HPLC quantification that the isolated bacterium has the ability to detoxify carbofuran (99% pure). Finally, the obtained results imply that the isolated strain of Enterobacter can be used as a potential and effective carbofuran degrader for bioremediation of contaminated sites through bioaugmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.