Abstract

Simultaneous high power generation (3.6 W/m2) and high Cd (90%) and Zn (97%) removal efficiencies were demonstrated in a single chamber air-cathode microbial fuel cell (MFC). The maximum tolerable concentrations (MTCs) were estimated as 200 μM for Cd and 400 μM for Zn. Increasing the concentrations of Cd to 300 μM and Zn to 500 μM resulted in voltage drops by 71 and 74%, respectively. Feeding the MFCs with incrementally increased Cd and Zn concentrations resulted in much slower reduction in voltage output. Biosorption and sulfides precipitation are the major mechanisms for the heavy metal removal in the MFCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.