Abstract
Ignoring measurement error may cause bias in the estimation of regression parameters. When the true covariates are unobservable, multiple imprecise measurements can be used in the analysis to correct for the associated bias. We suggest a simple estimating procedure that gives consistent estimates of regression parameters by using the repeated measurements with error. The relative Pitman efficiency of our estimator based on models with and without measurement error has been found to be a simple function of the number of replicates and the ratio of intra- to inter-variance of the true covariate. The procedure thus provides a guide for deciding the number of repeated measurements in the design stage. An example from a survey study is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.