Abstract

Augmentation of the alveolar bone is important before oral implantation. For large bone defects, it becomes necessary to apply guided bone regeneration (GBR) materials, accompanied by filling defect sites with autologous or allogeneic bone, or bone substitutes such as acellular bone powder. In this study, we tested a granular bone substitute and GBR membrane combination therapy in treating MC3T3-E1 and L929 cells in vitro and rat calvarial and alveolar defects in vivo. The recovery conditions of bone defects were monitored by micro-CT, and 3D reconstruction of the CT images was applied to evaluate the bone augmentation semi-quantitatively. Test GBR materials could support the proliferation of MC3T3-E1 cells, poly (p-dioxanone-co-L-phenylalanine) (PDPA)-based membrane could induce apoptosis of L929 cells. Among GBR membranes applied groups, the regeneration condition of defected calvarial defects of PDPA based membrane applied group was the best and this may be caused by its excellent positive space acquiring effect. However, in a complex bacteriogenic environment, the oral bone regeneration-guided efficacy of the PDPA membrane decreased in the post-repair stage with the aggravation of infections. By contrast, the antimicrobial membrane combined with the PDPA membrane exhibited continually increasing GBR efficacy at the later stage of repair owing to its multifunctional properties, which are infection-inhibiting and positive space acquiring. Therefore, multifunctional GBR membranes are preferable for GBR in complex oral environments, and further research should be conducted to determine their efficacy in other models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call