Abstract

Biofilm formation by E. coli is a serious threat to meat processing plants. Chemical disinfectants often fail to eliminate biofilms; thus, bacteriophages are a promising alternative to solve this problem, since they are widely distributed, environmentally friendly, and nontoxic to humans. In this study, the biofilm formation of 10 E. coli strains isolated from the meat industry and E. coli ATCC BAA-1430 and ATCC 11303 were evaluated. Three strains, isolated from the meat contact surfaces, showed adhesion ability and produced extracellular polymeric substances. Biofilms of these three strains were developed onto stainless steel (SS) surfaces and enumerated at 2, 12, 24, 48, and 120 h, and were visualized by scanning electron microscopy. Subsequently, three bacteriophages showing podovirus morphology were isolated from ground beef and poultry liver samples, which showed lytic activity against the abovementioned biofilm-forming strains. SS surfaces with biofilms of 2, 14, and 48 h maturity were treated with mixed and individual bacteriophages at 8 and 9 log10 PFU/mL for 1 h. The results showed reductions greater than 6 log10 CFU/cm2 as a result of exposing SS surfaces with biofilms of 24 h maturity to 9 log10 PFU/mL of bacteriophages; however, the E. coli and bacteriophage strains, phage concentration, and biofilm development stage had significant effects on biofilm reduction (p < 0.05). In conclusion, the isolated bacteriophages showed effectiveness at reducing biofilms of isolated E. coli; however, it is necessary to increase the libraries of phages with lytic activity against the strains isolated from production environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.