Abstract
Periodontal disease is one of the most prevalent afflictions worldwide. It is an infection of the periodontium as a result of subgingival colonization of the specific microbiota, leading to loss of attachment, which requires optimal care for regeneration to its pre-disease state. Guided Tissue Regeneration (GTR) is one of the successful treatment modalities in Periodontal Regenerative Therapy, but is vulnerable to bacterial colonization. The conflict between usage of classical antibiotics and plant origin antimicrobial agents has recently been in the limelight. The aim of this study was to assess the in vitro antimicrobial activity of amoxicillin, metronidazole and green coffee extract loaded onto GTR membrane against periodonto-pathogens. Pure form of amoxicillin, metronidazole and green coffee extract were obtained. One percent concentration of each antimicrobial agent was prepared by appropriate dilution with distilled water. GTR membrane was cut into a size of 1x0.5 cm under sterile conditions and was coated with the antimicrobial agents respectively and with distilled water as the negative control. Antimicrobial activity was checked against Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) and Porphyromonas gingivalis (P. gingivalis) using agar disc diffusion method. The statistical analysis was done using Kruskal Wallis ANOVA and Mann-Whitney U test. One percent amoxicillin showed level of significance (p>0.05) against both A. actinomycetemcomitans and P. gingivalis. Green coffee extract showed no zone of inhibition against both the bacterial species. Loading of commercially available antimicrobial agents onto GTR membrane can prevent its bacterial colonization leading to better treatment outcomes for periodontal regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.