Abstract

Background: Rice is one of the staple crops in the African continent for its ability to give maximum yields which can help to achieve food security under the sustainable development goals (SDGs); to those effects, the incessant use of inorganic fertilizer has been employed which proved to have devastating effect in the environment and the ecosystem at large. Therefore, the thirst for an alternative method to ensure bumper production of rice cannot be overemphasized so as to prevent soil alteration and environmental damage. Objective: This study aimed at determining the efficacy of mycorrhizae-based manure on the vegetative growth of rice as compared to inorganic fertilizer and its sustainability. Methods: Soil samples were collected from seven (7) locations (M1 - M7). Mycorrhiza were isolated from the soils and mass produced, mixed with organic waste to form manure (biofertilizer) and were applied at concentrations of 50 g, 100 g and 150 g to the potted rice in tree (3) replicates. Growth parameters observed were plant height, girth diameter, leaf broadness and leaf number. Results: The result revealed mycorrhizal spore count ranging from 1.7 × 107 - to 4.1 × 107 across the locations. The mycorrhizae-based manure gives the highest plant height of 45.33 cm as compared with the least plant height of 18.5 cm from the inorganic fertilizer. Furthermore, the biofertilizer gives a positive influence on the other parameters observed in comparison with the inorganic fertilizer. Statistical analysis shows that, the means of all the parameters except for leaf numbers were significantly different at p ≤ 0.05 across the sampling locations. Conclusions: Mycorrhizae-based manure proves to be an effective replacement of inorganic fertilizer that can boost rice production at a cheaper cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.