Abstract

Female reproductive disorders, such as premature ovarian insufficiency (POI), intrauterine adhesion (IUA) or thin endometrium, and polycystic ovary syndrome (PCOS), are the main factors affecting fertility. Mesenchymal stem cells derived-extracellular vesicles (MSC-EVs) have gained traction as a new potential treatment and were widely studied in these diseases. However, their impact is still not fully clear. A systematic search of PubMed, Web of Science, EMBASE, the Chinese National Knowledge of Infrastructure, and WanFang online databases was performed up to September 27th, 2022, and the studies of MSC-EVs-based therapy on the animal models of female reproductive diseases were included. The primary outcomes were anti-Müllerian hormone (AMH) in POI and endometrial thickness in IUA, respectively. 28 studies (POI, N = 15; IUA, N = 13) were included. For POI, MSC-EVs improved AMH at 2weeks (SMD 3.40, 95% CI 2.02 to 4.77) and 4weeks (SMD 5.39, 95% CI 3.43 to 7.36) compared with placebo, and no difference was found when compared with MSCs in AMH (SMD -2.03, 95% CI -4.25 to 0.18). For IUA, MSC-EVs treatment could increase the endometrial thickness at 2weeks (WMD 132.36, 95% CI 118.99 to 145.74), but no improvement was found at 4weeks (WMD 166.18, 95% CI -21.44 to 353.79). The combination of MSC-EVs with hyaluronic acid or collagen had a better effect on the endometrial thickness (WMD 105.31, 95% CI 85.49 to 125.13) and glands (WMD 8.74, 95% CI 1.34 to 16.15) than MSC-EVs alone. The medium dose of EVs may allow for great benefits in both POI and IUA. MSC-EVs treatment could improve the functional and structural outcomes in female reproductive disorders. The combination of MSC-EVs with HA or collagen may enhance the effect. These findings can accelerate the translation of MSC-EVs treatment to human clinical trials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call