Abstract

The COVID-19 pandemic triggered a surge in demand for facemasks to protect against disease transmission. In response to shortages, many public health authorities have recommended homemade masks as acceptable alternatives to surgical masks and N95 respirators. Although mask wearing is intended, in part, to protect others from exhaled, virus-containing particles, few studies have examined particle emission by mask-wearers into the surrounding air. Here, we measured outward emissions of micron-scale aerosol particles by healthy humans performing various expiratory activities while wearing different types of medical-grade or homemade masks. Both surgical masks and unvented KN95 respirators, even without fit-testing, reduce the outward particle emission rates by 90% and 74% on average during speaking and coughing, respectively, compared to wearing no mask, corroborating their effectiveness at reducing outward emission. These masks similarly decreased the outward particle emission of a coughing superemitter, who for unclear reasons emitted up to two orders of magnitude more expiratory particles via coughing than average. In contrast, shedding of non-expiratory micron-scale particulates from friable cellulosic fibers in homemade cotton-fabric masks confounded explicit determination of their efficacy at reducing expiratory particle emission. Audio analysis of the speech and coughing intensity confirmed that people speak more loudly, but do not cough more loudly, when wearing a mask. Further work is needed to establish the efficacy of cloth masks at blocking expiratory particles for speech and coughing at varied intensity and to assess whether virus-contaminated fabrics can generate aerosolized fomites, but the results strongly corroborate the efficacy of medical-grade masks and highlight the importance of regular washing of homemade masks.

Highlights

  • The COVID-19 pandemic triggered a surge in demand for facemasks to protect against disease transmission

  • It is well established that fibrous cellulosic materials, like cotton and paper, can release large quantities of micron-scale particles into the ­air[39,40,41,42]. These particles have not been considered a potential concern for respiratory viral diseases like influenza or COVID-19, since these diseases have been thought to be transmitted via expiratory particles emitted directly from the respiratory tract of infected ­individuals[43]

  • Wearing a surgical mask or a KN95 respirator significantly reduced the outward number of particles emitted per second of breathing

Read more

Summary

Introduction

The COVID-19 pandemic triggered a surge in demand for facemasks to protect against disease transmission. Recent work by Liu et al demonstrated that some of the highest counts of airborne SARS-CoV-2 (the virus responsible for COVID-19) occurred in hospital rooms where health care workers doffed their PPE, suggesting that virus was potentially being aerosolized from virus-contaminated clothing or PPE, or resuspended from virus-contaminated dust on the ­floor[47] It remains unknown what role aerosolized fomites play in transmission of infectious respiratory disease between humans, and it is unclear whether certain types of masks are simultaneously effective at blocking emission of respiratory particles while minimizing emission of non-expiratory (cellulosic) particles

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call