Abstract

The influence of magnetite nanoparticle (nFe3O4) concentrations (20, 50, and 75 mg/L) on reactor performance and retention time was investigated for the first time in an initially upset solid-state anaerobic batch (SSAB) reactor. nFe3O4 mitigated acidification threat, enhanced reactor stability, ensured rapid volatile fatty acids bioconversion, and modified microbial community. The impacts reduced retention time by 27 days relative to the control. Of the nFe3O4 concentrations, 20 mg/L had the highest hemicellulose degradation (93%) and methane yield (191.2 L/kg VS) with no threat to anaerobic microbes. Besides, existing kinetic models, novel models equally well-described methane yield with low root mean square errors (RMSE) < 1.2 and high coefficients of determination (R2) > 98%, therefore could be used for downstream applications. This study provides useful information on the impact of nFe3O4 on reactor stability and reactor performance in an initially upset SSAB reactor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call