Abstract

BackgroundSarcopenia is accompanied by a decline in muscle mass, muscle strength, and muscle function. Resistance training is the most potential training method for the prevention and treatment of sarcopenia. However, the conventional high-load resistance training (CRT) recommended by the American College of Sports Medicine is a challenge for older people with sarcopenia. As a novel training method, low-load resistance training combined with blood flow restriction (LRT-BFR) may elicit similar muscle mass and muscle strength gains as CRT but with less effort. The objectives of this study are to assess and compare the efficacy and safety of 12-week LRT-BFR and CRT on muscle strength, muscle performance, body composition, pulmonary function, blood biomarkers, CVD risk factors, and quality of life in community-dwelling older Chinese people with sarcopenia.MethodThis is a 12-week, assessor-blinded, 3-arm randomized controlled trial with a non-exercise control group. Community-dwelling people over 65 years will be screened for sarcopenia according to the diagnostic criteria of the Asian Working Group for Sarcopenia (AWGS). Fifty-one subjects will be randomized into a LRT-BFR group (n = 17), a CRT group (n = 17), and a no-strength training control group (n = 17). The primary outcome is lower limb muscle strength. The secondary outcomes are body composition, upper limb muscle strength, pulmonary function, blood biomarkers, CVD risk factors, and quality of life. Post-intervention follow-up will be performed for 12 weeks. These indicators will be assessed at baseline (0 week), after the 12-week intervention (12 weeks), and at follow-up (24 weeks). The adverse events will also be reported. Data will be analyzed for all participants in an intent-to-treat plan.DiscussionThis study is the first RCT that will systematically measure and compare the efficacy and safety of LRT-BFR and CRT in older people with sarcopenia on muscle strength, body composition, pulmonary function, blood biomarkers (inflammatory biomarkers, hormone, and growth factors), CVD risk factors, and quality of life. This study can provide an efficient and safe method to prevent the progression of sarcopenia in older people.Trial registrationChinese Clinical Trial Registry ChiCTR2100042803. Registered on 28 January 2021.

Highlights

  • Sarcopenia is accompanied by a decline in muscle mass, muscle strength, and muscle function

  • Sarcopenia is a condition characterized by a progressive decline in skeletal muscle mass, muscle strength, and physical performance associated with advancing age [1]

  • An increasing number of studies have shown that sarcopenia is associated with several adverse health outcomes such as falls and fractures [3] and that sarcopenia is strongly associated with disability and premature mortality in older people [45]

Read more

Summary

Introduction

Sarcopenia is accompanied by a decline in muscle mass, muscle strength, and muscle function. As a novel training method, low-load resistance training combined with blood flow restriction (LRT-BFR) may elicit similar muscle mass and muscle strength gains as CRT but with less effort. The objectives of this study are to assess and compare the efficacy and safety of 12-week LRT-BFR and CRT on muscle strength, muscle performance, body composition, pulmonary function, blood biomarkers, CVD risk factors, and quality of life in community-dwelling older Chinese people with sarcopenia. Sarcopenia is a condition characterized by a progressive decline in skeletal muscle mass, muscle strength, and physical performance associated with advancing age [1]. Sarcopenia results from complex and interdependent pathophysiological mechanisms It involves muscle tissue loss and muscle contractile dysfunction, and endocrine and metabolic abnormalities and is related to a low-inflammatory state referred to as inflamm-aging [6]. The most common biomarkers are inflammatory biomarkers (such as interleukin-6 [IL-6], tumor necrosis factor alpha [TNF-α], and serum C-reactive protein [CRP]), hormone (such as growth hormone [GH] and insulin-like growth factor 1 [IGF-1]), and growth factors (such as myostatin [MSTN] and follistatin [FST])

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call