Abstract

Dedifferentiated thyroid cancer is often incurable because it does not respond to radioiodine. This study aimed to investigate iodide uptake and the expressions of thyroid-specific molecules after the transfection of human thyrotropin receptor (hTSHR) gene in poorly differentiated follicular thyroid cancer cell line (FTC-133). pGC-FU-hTSHR-GFP-lentivirus and pGC-FU-GFP-lentivirus were added into FTC-133 cells respectively. The parental cells were defined as the blank group. Cells transduced with pGC-FU-GFP and pGC-FU-hTSHR-GFP were defined as the control group and experimental group respectively. The efficiency of transfection was observed under a fluorescence microscope. (125)I uptake by FTC-133 was analyzed by measuring the radioactivity. Real time-PCR, western blotting and radioimmunoassay were applied to detect the expressions of mRNAs and proteins of Na(+)/I(-) symporter (NIS), thyroid-stimulating hormone receptor (TSHR), thyroid peroxidase (TPO) and thyroglobulin (Tg) in FTC-133. The green fluorescence was present in 80% of the transduced cells under fluorescence microscope. The iodine uptake of cells transduced with pGC-FU-TSHR-GFP was 3.3 times higher than that in the other two groups (P<0.01). NIS, TSHR, TPO and Tg had been significantly up-regulated in the experimental group as compared to the control group (P<0.01) and the blank group (P<0.01). The hTSHR transfection in FTC-133 improved the expression of thyroid-specific molecules including TSHR, NIS, TPO and Tg and radioiodide uptake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call