Abstract

BackgroundMalaria is a public health problem in the Brazilian Amazon region. In integrated vector management for malaria (anopheline) control, indoor residual spraying (IRS) represents one of the main tools in the basic strategy applied in the Amazonian states. It is essential to understand the residual efficacy of insecticides on different surfaces to determine spray cycles, ensure their rational use, and prevent wastage. This study aimed to evaluate the residual efficacy of six insecticide formulations used in the National Malaria Control Programme on four different types of walls in a field simulation at a “test house”.MethodsThe tests were performed as a field-simulating evaluation at a “test house” built in the municipality of Macapá. Six insecticide formulations comprising four pyrethroids, a carbamate, and an organophosphate were used, and evaluated when applied on different wall surfaces: painted wood, unpainted wood, plastered cement, and unplastered cement. The insecticides were applied to the interior walls of the “test house” by a trained technician.ResultsIn the bioassays performed with pyrethroids, deltamethrin water-dispersible granules (WG) performed particularly well, presenting residual bioefficacy of 8 months on both wood surfaces after the IRS, whereas alpha-cypermethrin suspension concentrate (SC) and etofenprox wettable powder (WP) demonstrated residual bioefficacy of 4 months on at least one of the wood surfaces; however, the pyrethroid lambda-cyhalothrin WP showed a low residual bioefficacy (< 3 months) on all tested surfaces, demonstrating its inefficiency for areas with a long transmission cycle of malaria. For the carbamate-bendiocarb WP, residual bioefficacy for 3 months was achieved only on wood surfaces. In general, the organophosphate pirimifos-methyl capsule suspension (CS) demonstrated the best result, with a mortality rate < 80% over a period of 6 months on all surfaces tested.ConclusionInsecticide efficiency varies among different types of surface; therefore, a “test house” is a valuable evaluation tool. This work highlights the usefulness of associating the residual efficacy of insecticides on the surfaces commonly found in houses in endemic areas, together with knowledge about the transmission cycle duration of the transmission cycle and the insecticide susceptibility of the vector. This association helps in the decision-making for the malaria control intervention regarding.

Highlights

  • Malaria is a public health problem in the Brazilian Amazon region

  • The aim of the present study was to evaluate, for the first time in a field simulation, the residual effect of six insecticide formulations used by the National Malaria Control Programme (NMCP) in an experimental hut called a “test house”, featuring walls composed of four different surfaces in the Brazilian Amazon

  • The evaluation of the residual effect of the insecticides was carried out considering the Findings in the first phase In the bioassays performed with the pyrethroids, the results of the tests after 24 h of spraying revealed a mortality rate above 80% for all of the surfaces used, with results reaching 100% for alpha-cypermethrin suspension concentrate (SC) in painted wood (WP1) and for etofenprox wettable powder (WP) in WP1 and unpainted wood (WP2), attesting to the efficacy of the spraying

Read more

Summary

Introduction

Malaria is a public health problem in the Brazilian Amazon region. In integrated vector management for malaria (anopheline) control, indoor residual spraying (IRS) represents one of the main tools in the basic strategy applied in the Amazonian states. The set of interventions recommended by the World Health Organization (WHO), and adopted by the National Malaria Control Programme (NMCP), proposes: reducing the lethality and severity of cases, reducing the incidence of the disease through the elimination of transmission in urban areas, and maintaining the absence of the disease in places where the transmission has already been interrupted. This approach is understood to involve integrated, selective, and economic control activities that are suitable for the epidemiological scenario and appropriate to the actual conditions in each region [1, 6]. Vector control is an essential component and should be implemented based on local entomo-epidemiological data; for this, long-lasting insecticidal nets (LLIN) and indoor residual sprays (IRS) can be widely applied, which have achieved decreases in malaria cases [7, 8] in Africa, Asia, Europe, and Latin America [9,10,11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call