Abstract

Statement of problemThe presence of biofilms on maxillofacial silicone increases the risk of infections and reduces durability. Whether silver nanoparticles (AgNPs) with potent antimicrobial effects help reduce biofilm formation is unclear. PurposeThe purpose of this in vitro study was to assess the antimicrobial effect of sub 10-nm AgNPs in maxillofacial silicone against Staphylococcus aureus, Candida albicans, and mixed species biofilms containing both and to test the effectiveness of different AgNP concentrations against all 3 biofilms in vitro. Material and methodsSilicone disks (M511; Technovent Ltd) containing 0.0% (control), 0.1%, and 0.5% AgNPs were fabricated and treated with S. aureus, C. albicans, and mixed species strains of both in 24-well culture plates containing appropriate media. Each well received a 0.1-mL aliquot of the standardized suspension of microorganisms. The plates were incubated for 21 consecutive days, and colony-forming units per milliliter (CFU/mL) were measured on the first, third, fifth, seventh, fifteenth, and twenty-first day with the Miles and Misra method. Data were analyzed by 2-way ANOVA and the paired t test to evaluate the relationship between AgNP concentration, microbial strain, and time (α=.05). Mean CFU/mL differences for each time and for each biofilm category were assessed by repeated measure ANOVA. ResultsAgNPs decreased the mean CFU/mL in both concentrations compared with the control. The 0.1% concentration showed sustained efficacy throughout the test, while the 0.5% concentration had high efficacy initially with a gradual decrease. However, the results were inconsistent for the mixed biofilm. The paired sample t test at day 3 and 15 and day 3 and 21 showed statistically significantly different results (P<.001) in all but 1 group in the 0.5% concentration. The 2-way mixed ANOVA showed statistically significant (P<.001) interaction between AgNP concentration and time in all groups. The 1-way ANOVA of AgNP concentrations was statistically significantly different (P<.001) for all time points. A statistically significant (P<.001) effect of time on CFU/mL was found for all the AgNP concentration groups in all 3 biofilms. ConclusionsSilicone elastomers with sub 10-nm AgNPs displayed antimicrobial properties in vitro against S. aureus, C. albicans, and mixed species strains. AgNPs (0.1%) were effective against both microbial strains and can provide a baseline for further long-term studies regarding antimicrobial efficacy, silver ion leaching, and cellular internalization. Mixed species biofilm needs further exploration with standardized study parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call