Abstract
Pancreatic cancer (PC) carries a poor prognosis with high rates of unresectable/metastatic disease at diagnosis, recurrence after resection, and few systemic therapy options. Deficient mismatch repair (dMMR)/high microsatellite instability (MSI-H) PCs demonstrated uncharacteristically poor outcomes in KEYNOTE-158, evaluating pembrolizumab in MSI-H solid tumors. Our study aggregates the Mayo Clinic experience with dMMR/MSI-H PCs, characterizing the clinical, molecular, and treatment response patterns with a focus on response to immune checkpoint inhibitors (ICIs). Retrospective data were collected from the electronic medical record from December 2009 to February 2023. Patients were included if they had a pathologically confirmed pancreatic malignancy and had (1) deficient expression of mismatch repair (MMR) proteins by tumor immunohistochemistry, (2) pathogenic mutation of MMR genes on genomic sequencing, and/or (3) MSI-H by polymerase chain reaction. Thirty-two patients were identified for inclusion, with all stages of disease represented. Sixteen of these patients underwent surgery or chemoradiotherapy. Of these patients, uncharacteristically favorable responses were seen, with a recurrence rate of only 19% (n = 3) despite a median follow-up of 25 months. In the palliative setting, excellent responses to ICI were seen, with overall response rate (ORR) of 75% (20% complete response). Median time to disease progression was not reached. Response rates to cytotoxic chemotherapy in the palliative setting were poor, with 30% ORR and median time to progression of 4 months. We observed a high rate of discrepancy between MMR and MSI testing methods, representing 19% of the entire cohort and 26% of evaluable cases. Our data argue for the preferential use of ICI over cytotoxic chemotherapy in any patient with dMMR/MSI-H PC requiring systemic therapy, including in the metastatic and adjuvant/neoadjuvant settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.