Abstract

BackgroundExtracorporeal shock-wave therapy (ESWT), which can be divided into radial shock-wave therapy (RaSWT) and focused shock-wave therapy (FoSWT), has been widely used in clinical practice for managing orthopedic conditions. The aim of this study was to determine the clinical efficacy of ESWT for knee soft tissue disorders (KSTDs) and compare the efficacy of different shock-wave types, energy levels, and intervention durations.MethodsWe performed a comprehensive search of online databases and search engines without restrictions on the publication year or language. We selected randomized controlled trials (RCTs) reporting the efficacy of ESWT for KSTDs and included them in a meta-analysis and risk of bias assessment. The pooled effect sizes of ESWT were estimated by computing odds ratios (ORs) with 95% confidence intervals (CIs) for the treatment success rate (TSR) and standardized mean differences (SMDs) with 95% CIs for pain reduction (i.e., the difference in pain relief, which was the change in pain from baseline to the end of RCTs between treatment and control groups) and for restoration of knee range of motion (ROM).ResultsWe included 19 RCTs, all of which were of high or medium methodological quality and had a Physiotherapy Evidence Database score of ≥5/10. In general, ESWT had overall significant effects on the TSR (OR: 3.36, 95% CI: 1.84–6.12, P < 0.0001), pain reduction (SMD: − 1.49, 95% CI: − 2.11 to − 0.87, P < 0.00001), and ROM restoration (SMD: 1.76, 95% CI: 1.43–2.09, P < 0.00001). Subgroup analyses revealed that FoSWT and RaSWT applied for a long period (≥1 month) had significant effects on pain reduction, with the corresponding SMDs being − 3.13 (95% CI: − 5.70 to − 0.56; P = 0.02) and − 1.80 (95% CI: − 2.52 to − 1.08; P < 0.00001), respectively. Low-energy FoSWT may have greater efficacy for the TSR than high-energy FoSWT, whereas the inverse result was observed for RaSWT.ConclusionsThe ESWT exerts an overall effect on the TSR, pain reduction, and ROM restoration in patients with KSTDs. Shock-wave types and application levels have different contributions to treatment efficacy for KSTDs, which must be investigated further for optimizing these treatments in clinical practice.

Highlights

  • Extracorporeal shock-wave therapy (ESWT), which can be divided into radial shock-wave therapy (RaSWT) and focused shock-wave therapy (FoSWT), has been widely used in clinical practice for managing orthopedic conditions

  • We used an energy flux density (EFD) value of 0.20 mJ/mm2 as the cutoff for low and high energy levels; the results reveal that compared with high-energy FoSWT, the low-energy FoSWT may exert greater effects on the treatment success rate (TSR) and functional recovery and may exert similar effects on pain reduction in patients with knee soft tissue disorders (KSTDs)

  • After the exclusion of Zhou’s study from meta-analyses, the results showed significant effects on the TSR and pain reduction favoring RaSWT, and heterogeneity was improved. (iii) Our meta-analysis indicated that low-energy FoSWT exerted higher effects on the TSR and patient-reported functional recovery than high-energy FoSWT, and the RaSWT showed an inverse case

Read more

Summary

Introduction

Extracorporeal shock-wave therapy (ESWT), which can be divided into radial shock-wave therapy (RaSWT) and focused shock-wave therapy (FoSWT), has been widely used in clinical practice for managing orthopedic conditions. Knee soft tissue disorders (KSTDs) are common problems that develop from sports-induced tendon and ligament injuries in athletes [1], and they originate from overuse conditions or traumatic injuries in nonathletes [2,3,4]. Because of its efficacy in exerting analgesic effects and promoting soft tissue remodeling and repair, ESWT has been successfully used for treating many other soft tissue disorders that occur after sports injuries and traumatic accidents, such as muscular disorders [14, 15], posttraumatic knee stiffness [16, 17], and ligament injuries [18,19,20,21], as well as ligament desmitis in animals [22,23,24]. The aforementioned cascades of biological events support that ESWT can be employed to reduce pain, increase blood flow in ischemic tissues, soften calcified tissues, treat tissue fibrosis, and release adhesions, as well as relieve posttraumatic knee stiffness, thereby improving physical function and performance in sports activities

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call