Abstract

The cross-field electron mobility in Hall thrusters is known to be enhanced by wall collisionality and turbulent plasma fluctuations. Although progress has been made in understanding the plasma-wall interaction and instabilities responsible for the anomalous transport, a predictive model based on the underlying physics of these processes has yet to emerge. Hybrid-PIC simulations of the Hall thruster have typically depended on semi-empirical models of the mobility to provide sufficient electron current to match experimental results. These models are capable of qualitatively predicting the plasma response over a wide range of operating conditions, but have limited quantitative capabilities unless they are calibrated with experimental data. The efficacy of several electron mobility models in reproducing the plasma response of a 6 kW laboratory Hall thruster are assessed. With respect to a two-region mobility model that is frequently reported in the literature, a three-region model for the mobility is shown to significantly improve the agreement with experimentally measured profiles of the plasma potential and electron temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call