Abstract

BackgroundLow nitric oxide (NO) bioavailability plays a role in the pathogenesis of human as well as of experimental cerebral malaria (ECM) caused by Plasmodium berghei ANKA (PbA). ECM is partially prevented by administration of the NO-donor dipropylenetriamine NONOate (DPTA-NO) at high concentration (1 mg/mouse), which also induces major side effects such as a sharp drop in blood pressure. We asked whether alternative strategies to improve NO bioavailability with minor side effects would also be effective in preventing ECM.Methodology/Principal FindingsMice were infected with PbA and prophylactically treated twice a day with bolus injections of L-arginine, Nω-hydroxy-nor-Arginine (nor-NOHA), tetrahydrobiopterin (BH4), separately or combined, sodium nitrite, sildenafil or sildenafil plus DPTA-NO starting on day 0 of infection. L-arginine and BH4 supplementation, with or without arginase inhibition by nor-NOHA, increased plasma nitrite levels but failed to protect against ECM development. Accordingly, prophylactic treatment with continuous delivery of L-arginine using osmotic pumps also did not improve survival. Similar outcomes were observed with sodium nitrite sildenafil (aimed at inhibiting phosphodiesterase-5) or with DPTA-NO. However, sildenafil (0.1 mg/mouse) in combination with a lower dose (0.1 mg/mouse) of DPTA-NO decreased ECM incidence (82±7.4% mortality in the saline group and 38±10.6% in the treated group; p<0.05). The combined prophylactic therapy did not aggravate anemia, had delayed effects in systolic, diastolic and mean arterial blood pressure and induced lower effects in pulse pressure when compared to DPTA-NO 1 mg/mouse.Conclusions/SignificanceThese data show that sildenafil lowers the amount of NO-donor needed to prevent ECM, resulting also in lesser side effects. Prophylactic L-arginine when given in bolus or continuous delivery and bolus BH4 supplementation, with or without arginase inhibition, were able to increase NO bioavailability in PbA-infected mice but failed to decrease ECM incidence in the doses and protocol used.

Highlights

  • Human cerebral malaria (HCM) is a life-threatening condition and remains a serious public health problem in a number of tropical and sub-tropical countries [1]

  • The murine model of cerebral malaria induced by Plasmodium berghei ANKA (PbA) in susceptible mouse strains is considered to present a number of similarities with HCM in terms of physiopathogenesis

  • We first attempted to prevent experimental cerebral malaria (ECM) in PbA-infected mice by addressing the possibility that low nitric oxide (NO) bioavailability is related to hypoargininemia, whether or not caused by increased arginase activity, or NO synthases (NOS) dysfunction caused by BH4 deficiency

Read more

Summary

Introduction

Human cerebral malaria (HCM) is a life-threatening condition and remains a serious public health problem in a number of tropical and sub-tropical countries [1]. The murine model of cerebral malaria induced by Plasmodium berghei ANKA (PbA) in susceptible mouse strains is considered to present a number of similarities with HCM in terms of physiopathogenesis. Low nitric oxide (NO) bioavailability is believed to play a significant role in both HCM and murine or experimental cerebral malaria (ECM). Endothelial dysfunction is at least in part explained by a state of low NO bioavailability in PbA-infected mice that has been argued to result mainly from the low plasma levels of L-arginine [16], the substrate used by the NO synthases (NOS) to generate NO plus citrulline [17,18], as well as from the NO-scavenging effect of cell-free hemoglobin due to parasite-induced hemolysis [16]. Low nitric oxide (NO) bioavailability plays a role in the pathogenesis of human as well as of experimental cerebral malaria (ECM) caused by Plasmodium berghei ANKA (PbA).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call