Abstract

BackgroundMild therapeutic hypothermia (32–36 °C) is associated with improved outcomes in patients with brain injury after cardiac arrest (CA). Various devices are available to induce and maintain hypothermia, but few studies have compared the performance of these devices. We performed a prospective study to compare four frequently used cooling systems in inducing and maintaining hypothermia followed by controlled rewarming. MethodsWe performed a prospective multi-centered study in ten ICU’s in three hospitals within the UPMC health system. Four different cooling technologies (seven cooling methods in total) were studied: two external water-circulating cooling blankets (Meditherm® and Blanketrol®), gel-coated adhesive cooling pads (Arctic Sun®), and endovascular cooling catheters with balloons circulating ice-cold saline (Thermogard®). For the latter system we studied three different types of catheter with two, three or four water-circulating balloons, respectively. In contrast to previous studies, we not only studied the cooling rate (i.e., time to target temperature) in the induction phase, but also the percentage of the time during the maintenance phase that temperature was on target ±0.5 °C, and the efficacy of devices to control rewarming. We believe that these are more important indicators of device performance than induction speed alone. Results129 consecutive patients admitted after CA and treated with hypothermia were screened, and 120 were enrolled in the study. Two researchers dedicated fulltime to this study monitored TH treatment in all patients, including antishivering measures, additional cooling measures used (e.g. icepacks and cold fluid infusion), and all other issues related to temperature management. Baseline characteristics were similar for all groups. Cooling rates were 2.06 ± 1.12 °C/h for endovascular cooling, 1.49 ± 0.82 for Arctic sun, 0.61 ± 0.36 for Meditherm and 1.22 ± 1.12 for Blanketrol. Time within target range ±0.5 °C was 97.3 ± 6.0% for Thermogard, 81.8 ± 25.2% for Arctic Sun, 57.4 ± 29.3% for Meditherm, and 64.5 ± 20.1% for Blanketrol. The following differences were significant: Thermogard vs. Meditherm (p < 0.01), Thermogard vs. Blanketrol (p < 0.01), and Arctic Sun vs. Meditherm (p < 0.02). No major complications occurred with any device. ConclusionsEndovascular cooling and gel-adhesive pads provide more rapid hypothermia induction and more effective temperature maintenance compared to water-circulating cooling blankets. This applied to induction speed, but (more importantly) also to time within target range during maintenance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.