Abstract

Research here explored the use of controlled atmospheres (CA) for managing arthropod pests that infest dry-cured hams. Experiments were conducted with low oxygen (O2) achieved with low pressure under a vacuum, high carbon dioxide (CO2), and ozone (O3). Results showed that both low O2 and high CO2 levels required exposures up to 144 h to kill 100% of all stages of red-legged ham beetle, Necrobia rufipes (De Geer) (Coleoptera: Cleridae) and ham mite Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) at 23 °C. In addition, both low O2 and high CO2 had no significant mortality against the ham beetle and ham mites at short exposures ranging from 12 to 48 h. Ham beetles were more tolerant than ham mites to an atmosphere of 75.1% CO2 and low pressure of 25 mm Hg, which imposed an atmosphere estimated at 0.9% O2. Both low O2 and high CO2 trials indicated that the egg stages of both species were more tolerant than other stages tested, but N. rufipes eggs and pupae were more susceptible than larvae and adults to high concentration ozone treatments. The results indicate that O3 has potential to control ham beetles and ham mites, particularly at ≈166 ppm in just a 24 h exposure period, but O3 is known from other work to have poor penetration ability, thus it may be more difficult to apply effectively than low O2 or high CO2. would be. CA treatment for arthropod pests of dry-cured hams show promise as components of integrated pest management programs after methyl bromide is no longer available for use.

Highlights

  • Chemical pesticides have been the predominant tools used to control infestations of arthropods, microbes, or vertebrates in durable food commodities and their storage structures over the past several decades

  • Chemical fumigation with methyl bromide (MB) was a very common method used for controlling arthropod pests in durable food products, but MB fumigation has been phased out from most general usage in many countries at this writing, and is in the process of being phased out worldwide due to its chemical nature as an ozone-depleting substance that can diminish the protective ozone layer of Earth’s atmosphere [1,2]

  • Controlled atmosphere (CA) applications have been the subject of numerous studies that have revealed them to be effective against arthropod pests of stored commodities and as promising candidates to replace MB [2,31]

Read more

Summary

Introduction

Chemical pesticides have been the predominant tools used to control infestations of arthropods, microbes, or vertebrates in durable food commodities and their storage structures over the past several decades. The ban on MB has stimulated research on MB alternatives, both chemical and non-chemical approaches, over the past two decades during the recent MB phase-out period [3]. Alternative fumigants, such as hydrogen phosphide, known as phosphine, and sulfuryl fluoride, have been investigated as replacements for MB, and sulfuryl fluoride. Other gasses that can act as fumigants, as well as non-chemical physical controls for stored-product insects, have received research attention [2,3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.