Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists have been demonstrated widely to be neuroprotective in cerebral ischemia, hypoxia, and traumatic brain injury. However, although noncompetitive NMDA antagonists have typically proven efficacious under all of these conditions, competitive antagonists have not been shown to be beneficial following moderate traumatic brain injury. The present study has used phosphorus magnetic resonance spectroscopy ([31P]MRS) to examine the effects of the competitive antagonist cis-4-(phosphonomethyl) piperidine-2-carboxylic acid (CGS-19755) and the noncompetitive antagonist dextromethorphan on biochemical outcome following fluid percussion-induced traumatic brain injury in rats. Five minutes prior to induction of moderate (2.8 +/- 0.2 atm) fluid percussion brain injury, animals received either CGS-19755 (10 mg/kg iv), dextromethorphan (10 mg/kg iv), or equal volume saline vehicle. [31P]MRS spectra were then acquired for 4 h post-trauma and intracellular pH, free magnesium concentration, cytosolic phosphorylation potential, and oxidative capacity determined. Both CGS-19755-treated animals and saline treated controls demonstrated significant and sustained declines in intracellular free magnesium concentration and bioenergetic status following trauma. In contrast, administration of dextromethorphan significantly attenuated free magnesium decline and improved bioenergetic state during the post-traumatic monitoring period. These results suggest that the neuroprotective actions of NMDA antagonists following traumatic brain injury are associated with attenuation of free magnesium decline and that such actions seem to be preferentially mediated by noncompetitive blockers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.