Abstract

BackgroundTo update the National Malaria Control Programme of Mali on the efficacy of chloroquine, amodiaquine and sulphadoxine-pyrimethamine in the treatment of uncomplicated falciparum malaria.MethodsDuring the malaria transmission seasons of 2002 and 2003, 455 children – between six and 59 months of age, with uncomplicated malaria in Kolle, Mali, were randomly assigned to one of three treatment arms. In vivo outcomes were assessed using WHO standard protocols. Genotyping of msp1, msp2 and CA1 polymorphisms were used to distinguish reinfection from recrudescent parasites (molecular correction).ResultsDay 28 adequate clinical and parasitological responses (ACPR) were 14.1%, 62.3% and 88.9% in 2002 and 18.2%, 60% and 85.2% in 2003 for chloroquine, amodiaquine and sulphadoxine-pyrimethamine, respectively. After molecular correction, ACPRs (cACPR) were 63.2%, 88.5% and 98.0% in 2002 and 75.5%, 85.2% and 96.6% in 2003 for CQ, AQ and SP, respectively. Amodiaquine was the most effective on fever. Amodiaquine therapy selected molecular markers for chloroquine resistance, while in the sulphadoxine-pyrimethamine arm the level of dhfr triple mutant and dhfr/dhps quadruple mutant increased from 31.5% and 3.8% in 2002 to 42.9% and 8.9% in 2003, respectively. No infection with dhps 540E was found.ConclusionIn this study, treatment with sulphadoxine-pyrimethamine emerged as the most efficacious on uncomplicated falciparum malaria followed by amodiaquine. The study demonstrated that sulphadoxine-pyrimethamine and amodiaquine were appropriate partner drugs that could be associated with artemisinin derivatives in an artemisinin-based combination therapy.

Highlights

  • To update the National Malaria Control Programme of Mali on the efficacy of chloroquine, amodiaquine and sulphadoxine-pyrimethamine in the treatment of uncomplicated falciparum malaria

  • The continued usage of a failing drug does increase the rate of malaria mortality and morbidity, while a premature change of anti-malarial treatment policy may lead to an unsustainable economical burden on the health systems of endemic countries [7]

  • To deter resistance of malaria parasites to these drugs, their use is recommended in combination with a second anti-malarial with a longer half-life, a treatment regimen known as artemisinin-based combination therapy (ACT)

Read more

Summary

Introduction

To update the National Malaria Control Programme of Mali on the efficacy of chloroquine, amodiaquine and sulphadoxine-pyrimethamine in the treatment of uncomplicated falciparum malaria. During the peak transmission season, malaria is responsible for up to 25% of mortality in children, 40% of anaemia in pregnant women and 84% of hospital visits[3] This major public health problem is worsened by the steady increase of the parasite's resistance to chloroquine (CQ), a cheap and safe anti-malarial drug [4,5]. In order to promote evidencebased policy decisions, the World Health Organization (WHO) stressed the need to monitor the efficacy of antimalarial drugs using standardized protocols [8] This regular monitoring has led several National Malaria Control Programmes to switch their first line treatment from CQ to sulphadoxine-pyrimethamine (SP) or other anti-malarials [9]. Resistance to SP emerged shortly afterwards in numerous places [10,11,12]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.