Abstract

Several types of psoriasiform dermatitis are associated with increased IL-36 cytokine activity in the skin. A rare, but severe, psoriasis-like disorder, generalized pustular psoriasis (GPP), is linked to loss-of-function mutations in the gene encoding IL-36RA, an important negative regulator of IL-36 signaling. To understand the effects of IL-36 dysregulation in a mouse model, we studied skin inflammation induced by intradermal injections of preactivated IL-36α. We found the immune cells infiltrating IL-36α-injected mouse skin to be of dramatically different composition than those infiltrating imiquimod-treated skin. The IL-36α-induced leukocyte population comprised nearly equal numbers of CD4+ αβ T cells, neutrophils, and inflammatory dendritic cells, whereas the imiquimod-induced population comprised γδ T cells and neutrophils. Ligands for chemokine receptors CCR6 and CXCR2 are increased in both GPP and IL-36α-treated skin, which led us to test an optimized small-molecule antagonist (CCX624) targeting CCR6 and CXCR2 in the IL-36α model. CCX624 significantly reduced the T cell, neutrophil, and inflammatory dendritic cell infiltrates and was more effective than saturating levels of an anti-IL-17RA mAb at reducing inflammatory symptoms. These findings put CCR6 and CXCR2 forward as novel targets for a mechanistically distinct therapeutic approach for inflammatory skin diseases involving dysregulated IL-36 signaling, such as GPP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.