Abstract

BackgroundNeuromodulation is a promising therapeutic alternative for epilepsy. We aimed to explore the efficacy and safety of cathodal transcranial current direct stimulation (ctDCS) on electroencephalographic functional networks in focal epilepsy. MethodsA sham-controlled, double-blinded, randomized study was conducted on 25 participants with focal epilepsy who underwent a 5-day, −1.0 mA, 20 min ctDCS, which targeted at the most active interictal epileptiform discharge (IED) region. We examined the electroencephalograms (EEGs) at baseline, immediately and at 4 weeks following ctDCS. The graph theory-based brain networks were established through time-variant partial directed coherence (TVPDC), and were calculated between each pair of EEG signals. The functional networks were characterized using average clustering coefficient, characteristic path length, and small-worldness index. The seizure frequencies, IEDs, graph-theory metrics and cognitive tests were compared. ResultsPreliminary findings indicated an IED reduction of 30.2% at the end of 5-day active ctDCS compared to baseline (p < 0.10) and a significant IED reduction of 33.4% 4 weeks later (p < 0.05). In terms of the EEG functional network, the small-worldness index significantly reduced by 3.5% (p < 0.05) and the characteristic path length increased by 1.8% (p < 0.10) at the end of the session compared to the baseline. No obvious change was found in the seizure frequency during follow-up (p > 0.05). The Mini-Mental State Examination (MMSE) showed no difference between the active and sham groups (p > 0.05). No severe adverse reactions were observed. ConclusionsIn focal epilepsy, the 5-day consecutive ctDCS may potentially decrease the IEDs and ameliorate the EEG functional network, proposing a novel personalized therapeutic scenario for epilepsy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call