Abstract
Bone graft is required in various surgical procedures. Although autograft is the gold standard, it has limited availability. Various compounds have been proposed as alternatives such as biphasic calcium phosphate (BCP), which is the most widely used compound. The newly synthesized microporous sphere-shaped BCP has the advantage of increasing contact surface, and it can induce the formation of microbone structures. A putty-type contains the addition of a fluid carrier to the sphere-shaped BCP and can be easily used for a small orifice large bone defect. To compare the widely used BCP products, new bone formation and residual graft materials (RGM) were evaluated for 6 and 12 weeks in a rabbit calvarial bone defect model. Although existing BCP products and the microporous sphere-type product did not differ significantly with respect to new bone formation and RGM, the putty-type product was largely washed out and had low new bone formation at 6 and 12 weeks. Overall, the results suggest that microporous sphere-shaped BCP showed similar bone formation capability to existing products and was able to maintain higher initial mechanical stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of biomedical materials research. Part B, Applied biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.