Abstract

A novel sanitizer composed of lactic acid and peroxyacetic acid (LA-PAA) was developed as an alternative to chlorinated water (CW) for fresh produce processing. Single strains of Lactobacillus plantarum, nonpathogenic Escherichia coli K-12, and Listeria innocua were used to demonstrate the microbial efficacy of LA-PAA. LA-PAA achieved a >7.8-log reduction of L. innocua and L. plantarum suspended in water at 4°C for 20 s, and LA, PAA, and CW achieved reductions of 0.4, 4.8, and 2.7 log, respectively. LA-PAA, when compared with LA, PAA, and CW, enhanced the reduction of L. innocua attached to romaine leaves by >2.2 log, and improved the removal of E. coli attached to spinach leaves by >2.4 log. The exponential improvement in the microbial efficacy of LA-PAA showed synergism between LA and PAA. LA-PAA microbial efficacy was inversely proportional to pH value and directly correlated with residence time and concentration. Despite an improvement in microbial reduction through the addition of surfactant to LA-PAA, the usage of surfactant in washing fresh produce was impeded by excessive foaming during actual processing. Effects of organic matter on the performance of LA-PAA were minimal. External sensory evaluations showed that LA-PAA had no negative effects on the quality of lettuce and tender leaves. Temperature-abuse studies demonstrated that LA-PAA reduced decay by ∼50% when compared with CW. Overall, these results support the premise that LA-PAA has significant potential to be an alternative to CW for fresh produce processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call