Abstract

BackgroundScale-up of the distribution of long-lasting insecticide-treated bed nets and indoor residual spraying with insecticides over the last decade have contributed to the considerable decrease of malaria morbidity and mortality in sub-Saharan Africa. Due to the increasing pyrethroid resistance intensity and the spread of carbamate resistance in Anopheles gambiae (s.s.) mosquitoes and the limited number of insecticides recommended by the WHO for vector control, alternative insecticide formulations for IRS with long-lasting residual activity are required to sustain the gains obtained in most malaria-endemic countries.MethodsSumiShield 50WG (clothianidin 300 mg ai/m2) developed by Sumitomo Chemical was evaluated alongside deltamethrin 25 mg ai/m2 (K-Othrine 250 WG) against a pyrethroid resistant Anopheles gambiae (s.l.) population in experimental huts in Covè, Benin. Residual activity was also tested in cone bioassays with the susceptible An. gambiae “Kisumu” strain and the local wild resistant population.ResultsThe results showed very low toxicity from deltamethrin (mortality rates ranged between 1–40%) against host-seeking resistant Anopheles populations. SumiShield in contrast gave an overall mean mortality of 91.7% at the 120 h observation across the eight- month observation period following spraying. The residual activity measured using cone tests was over the 80% WHO threshold for 24 weeks for resistant wild Anopheles population and 32 weeks for the susceptible strain “Kisumu” after the spraying.ConclusionsSumiShield is a good candidate for IRS in areas of permanent malaria transmission and where Anopheles populations are resistant to other conventional insecticides such as pyrethroids. It would be interesting to complete experimental huts studies by assessing the efficacy and residual effect of SumiShield 50WG at community level (small-scale field testing) in an area where vectors are highly resistant to insecticides.

Highlights

  • Scale-up of the distribution of long-lasting insecticide-treated bed nets and indoor residual spraying with insecticides over the last decade have contributed to the considerable decrease of malaria morbidity and mortality in sub-Saharan Africa

  • The first lesson learnt from the monitoring and evaluation of indoor residual spraying (IRS) in Africa is the variation in the residual life of the main insecticides used for indoor residual spraying: bendiocarb and pirimiphos methyl

  • Pyrethroid resistance is widespread in most malaria endemic countries and since carbamate resistance has arisen in some countries, only organophosphates, the remaining class of insecticides recommended by the World Health Organization (WHO), is used by National Malaria Control Programmes for indoor residual spraying and for resistance management

Read more

Summary

Introduction

Due to the increasing pyrethroid resistance intensity and the spread of carbamate resistance in Anopheles gambiae (s.s.) mosquitoes and the limited number of insecticides recommended by the WHO for vector control, alternative insecticide formulations for IRS with long-lasting residual activity are required to sustain the gains obtained in most malaria-endemic countries. Pyrethroid resistance is widespread in most malaria endemic countries and since carbamate resistance has arisen in some countries, only organophosphates, the remaining class of insecticides recommended by the WHO, is used by National Malaria Control Programmes for indoor residual spraying and for resistance management. For the National Malaria Control Programmes and the international community, it is judicious to prevent the rapid and widespread resistance to carbamates and organophosphates by evaluating new insecticide formulations with different modes of action and a long residual effect

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call