Abstract

Palmer amaranth, sicklepod and pitted morningglory are the three most common and troublesome weeds in soybean in South Carolina. They exhibit very aggressive growth capabilities and if left uncontrolled in fields will cause significant reductions in soybean yields. Dicamba and 2,4-D herbicides are currently having a resurgence in usage due to the recent commercialization of soybean trait technologies with tolerance to these herbicides. Dicamba and 2,4-D when tank mixed with glufosinate and glyphosate may offer additional weed control to resistant weeds through the process of herbicide synergism. Greenhouse experiments were conducted in 2013 at Edisto Research and Education Center near Blackville, SC to evaluate the efficacy of glyphosate, glufosinate, dicamba and 2,4-D treatments alone and in combination on Palmer amaranth, sicklepod, and pitted morningglory at selected heights. Results suggested that glufosinate alone provided the overall best control for all 3 weed species. Glyphosate alone provided the lowest control of all 3 species at all heights. Synergism or improved sicklepod control was observed when glufosinate was tank mixed with dicamba. However, as sicklepod increased in height, glufosinate + 2,4-D or dicamba combination offered the best control compared to glufosinate alone (90% versus 86% in 20 cm plants and 87% versus 85% in 30 cm plant). In the 5 cm Palmer amaranth, decreased control was observed when glyphosate or glufosinate was tank mixed with 2,4-D. These experiments showed that glufosinate alone and/or in combination with 2,4-D or dicamba was the overall best treatment on the three broadleaf weed species.

Highlights

  • Dicamba (3,6-dichloro-2-methoxybenzoic acid) and 2,4-D (2,4-dichlorophenoyacetic acid) are herbicides that have been used throughout the United States for more than half a century to control broadleaf weeds in grass crops [1] [2] [3]

  • As sicklepod increased in height, glufosinate + 2,4-D or dicamba combination offered the best control compared to glufosinate alone (90% versus 86% in 20 cm plants and 87% versus 85% in 30 cm plant)

  • Attention has been drawn to new formulations of dicamba and 2,4-D herbicides due to the release of the 2,4-D and dicamba tolerant soybean and cotton technologies that will assist in the management of difficult-to-control glyphosate-resistant Palmer amaranth

Read more

Summary

Introduction

Dicamba (3,6-dichloro-2-methoxybenzoic acid) and 2,4-D (2,4-dichlorophenoyacetic acid) are herbicides that have been used throughout the United States for more than half a century to control broadleaf weeds in grass crops [1] [2] [3]. Dicamba and 2,4-D are synthetic growth regulating herbicides that control susceptible broadleaf weeds by mimicking naturally occurring auxins found in plants [4]. Dicamba and 2,4-D, widely used, have long been scrutinized by regulators because of potential injury to off target plants caused by herbicide volatilization [6]; the release of new low volatility formulations of dicamba and 2,4-D has addressed most of those concerns [7] [8] [9] [10] [11]. Attention has been drawn to new formulations of dicamba and 2,4-D herbicides due to the release of the 2,4-D and dicamba tolerant soybean and cotton technologies that will assist in the management of difficult-to-control glyphosate-resistant Palmer amaranth

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call