Abstract

Vaccines that target antigens found on the mosquito stages of Plasmodium falciparum and Plasmodium vivax parasites are under development as transmission blocking vaccines. Antisera from vaccinated animals and humans are able to block oocyst development in artificially fed mosquitoes but it is not clear from these data what level of antibody response would be required for a useful vaccine in a field setting. This paper describes a mathematical model that takes into account the relationship between antibody levels and blocking of oocyst levels in artificial feeds, the distribution of antibody responses seen in human populations and the distribution of oocyst densities in infected mosquitoes in the field to calculate the levels of antibody in the host population that would be required to achieve a level of herd immunity in a vaccinated human population that would give an operationally useful level of transmission blocking. The model predicts that current formulations of Pfs25 are likely to achieve useful reductions in transmission when tested in human field trials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.