Abstract

A genetically engineered microorganism (GEM), Pseudomonas sp. B13 FRI (pFRC20P) (abbreviated FR120), has previously been engineered to simultaneously mineralize mixtures of methylated and chlorinated benzoic acids and phenols through a modified ortho cleavage pathway. In this study, its performance was investigated both in different types of aquatic microcosms and in pure culture to determine (1) if under simulated in situ conditions the genetically engineered pathway effectively removes mixtures of model pollutants simultaneously, quickly, and completely; (2) where the optimum pollutant concentration range for this activity lies; and (3) how physical, chemical, and biological factors in the microcosms influence degradation rates. Growth and degradation parameters of FR 120 in pure culture were determined with 3-chlorobenzoate (3CB), 4-methylbenzoate (4MB), and equimolar mixtures of both as carbon sources. These substrates were degraded simultaneously, albeit with different degradation velocities, by FR120. The optimum growth concentrations for 3CB and 4MB were 3.0 mm and 2.1 mM, respectively, and the inhibition constants (Ki) were 11 mm (3CB) and 6 mm (4MB). The pathway was induced at low concentrations of substrate (> 1 [μM). The first order degradation constants (kl) were determined with respect to substrate concentration, cell density, and temperature. In aquatic microcosms inoculated with FR120, first order degradation constants and half lives of target chemicals were calculated based on the total amount of aromatics recovered. Half lives ranged from 1.3 days to 3.0 days, depending on the target chemical and the type of microcosm. Degradation constants determined in pure culture were extrapolated to the densities of FR120, substrate concentrations, and temperature occurring in the microcosm experiments, and used to calculate theoretical half lives. In water microcosms, theoretical and observed half lives corresponded well, indicating that FR120 functioned optimally in this environment. In whole core sediment microcosms, and especially at low cell densities, the observed degradation activity was in some cases considerably higher than expected from pure culture degradation rates. This suggests that environmental conditions in the sediment were more favorable to the degradation of substituted aromatics than those in pure culture. The physiological characteristics of FR120 and its performance in aquatic microcosms make it a good candidate for bioremediation at sites contamninated with mixtures of chlorinated and methylated aromatics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call