Abstract

ABSTRACTIn-vessel and ex-vessel mitigation strategies have been revisited to improve the severe accident management (SAM) for operating nuclear power plants. Because independent mitigation measures tend to produce positive and adverse effects simultaneously, it is necessary to investigate the efficacy of individual measures by means of proper quantification. Thus, in the present study we investigated the overall efficacy of existing SA mitigation strategies prepared for the Optimized Power Reactor 1000 MWe (OPR1000) by means of MELCOR 1.8.6 code. The numerical evaluation showed that the Mitigation-01, feeding water into the steam generators, is the most effective among the other mitigations. In addition, Mitigation-02, reactor coolant system depressurization, could not mitigate the SA sufficiently when applied individually. Among the four ex-vessel mitigation strategies, execution of containment spray was effective in removing most of the aerosol fission product but also intensified hydrogen combustion by increasing the partial hydrogen pressure owing to steam condensation. Mitigation-07, operation of passive autocatalytic recombiners (PARs), could reduce the hydrogen concentration, though the catalytic reaction was predicted to increase the containment pressure. In conclusion, this study suggests that mitigation measures should be carefully selected, and that counteracting measures should be prepared to minimize potential adverse effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.