Abstract

The aim of this study was to evaluate the efficacy of the treatment of acid mine drainage (AMD) with calcinated coal mining waste using Allium cepa L. as a bioindicator. The pH values and the concentrations of aluminum, iron, manganese, zinc, copper, lead and sulfate were determined before and after the treatment of the AMD with calcinated coal mining waste. Allium cepa L. was exposed to untreated and treated AMD, as well as to mineral water as a negative control (NC). At the end of the exposure period, the inhibition of root growth was measured and the mean effective concentration (EC50) was determined. Oxidative stress biomarkers such as lipid peroxidation (TBARS), protein carbonyls (PC), catalase activity (CAT) and reduced glutathione levels (GSH) in the fleshy leaves of the bulb, as well as the DNA damage index (ID) in meristematic cells, were evaluated. The results indicated that the AMD treatment with calcinated coal mining waste resulted in an increase in the pH and an expressive removal of aluminum, iron, manganese and zinc. A high sub-chronic toxicity was observed when Allium cepa L. was exposed to the untreated AMD. However, after the treatment no toxicity was detected. Levels of TBARS and PC, CAT activity and the DNA damage index were significantly increased (P<0.05) in Allium cepa L. exposed to untreated AMD when compared to treated AMD and also to negative controls. No significant alteration in the GSH content was observed. In conclusion, the use of calcinated coal mining waste associated with toxicological tests on Allium cepa L. represents an alternative system for the treatment and biomonitoring of these types of environmental contaminants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call