Abstract
Effects of H2 O2 producing electrochemical-bandages (e-bandages) on methicillin-resistant Staphylococcus aureus colonization and biofilm removal were assessed using a porcine explant biofilm model. Transport of H2 O2 produced from the e-bandage into explant tissue and associated potential toxicity were evaluated. Viable prokaryotic cells from infected explants were quantified after 48 h treatment with e-bandages in three ex vivo S. aureus infection models: (1) reducing colonization, (2) removing young biofilms and (3) removing mature biofilms. H2 O2 concentration-depth profiles in explants/biofilms were measured using microelectrodes. Reductions in eukaryotic cell viability of polarized and nonpolarized noninfected explants were compared. e-Bandages effectively reduced S. aureus colonization (p =0.029) and reduced the viable prokaryotic cell concentrations of young biofilms (p =0.029) with limited effects on mature biofilms (p >0.1). H2 O2 penetrated biofilms and explants and reduced eukaryotic cell viability by 32-44% compared to nonpolarized explants. H2 O2 producing e-bandages were most active when used to reduce colonization and remove young biofilms rather than to remove mature biofilms. The described e-bandages reduced S. aureus colonization and young S. aureus biofilms in a porcine explant wound model, supporting their further development as an antibiotic-free alternative for managing biofilm infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.