Abstract

Novel radiotherapeutic modalities using carbon ions provide an increased relative biological effectiveness (RBE) compared to photons, delivering a higher biological dose while reducing radiation exposure for adjacent organs. This prospective phase 2 trial investigated bimodal radiotherapy using photons with carbon-ion (C12)-boost in patients with WHO grade 2 meningiomas following subtotal resection (Simpson grade 4 or 5). A total of 33 patients were enrolled from July 2012 until July 2020. The study treatment comprised a C12-boost (18 Gy [RBE] in 6 fractions) applied to the macroscopic tumor in combination with photon radiotherapy (50 Gy in 25 fractions). The primary endpoint was the 3-year progression-free survival (PFS), and the secondary endpoints included overall survival, safety and treatment toxicities. With a median follow-up of 42 months, the 3-year estimates of PFS, local PFS and overall survival were 80.3%, 86.7%, and 89.8%, respectively. Radiation-induced contrast enhancement (RICE) was encountered in 45%, particularly in patients with periventricularly located meningiomas. Patients exhibiting RICE were mostly either asymptomatic (40%) or presented immediate neurological and radiological improvement (47%) after the administration of corticosteroids or bevacizumab in case of radiation necrosis (3/33). Treatment-associated complications occurred in 1 patient with radiation necrosis who died due to postoperative complications after resection of radiation necrosis. The study was prematurely terminated after recruiting 33 of the planned 40 patients. Our study demonstrates a bimodal approach utilizing photons with C12-boost may achieve a superior local PFS to conventional photon RT, but must be balanced against the potential risks of toxicities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.