Abstract

BackgroundAcute respiratory distress syndrome (ARDS) in humans is caused by an unchecked proinflammatory response that results in diffuse and severe lung injury, and it is associated with a mortality rate of 35 to 45%. Mesenchymal stromal cells (MSCs; ‘adult stem cells’) could represent a promising new therapy for this syndrome, since preclinical evidence suggests that MSCs may ameliorate lung injury. Prior to a human clinical trial, our aim is to conduct a systematic review to compare the efficacy and safety of MSC therapy versus controls in preclinical models of acute lung injury that mimic some aspects of the human ARDS.Methods/DesignWe will include comparative preclinical studies (randomized and non-randomized) of acute lung injury in which MSCs were administered and outcomes compared to animals given a vehicle control. The primary outcome will be death. Secondary outcomes will include the four key features of preclinical acute lung injury as defined by the American Thoracic Society consensus conference (histologic evidence of lung injury, altered alveolar capillary barrier, lung inflammatory response, and physiological dysfunction) and pathogen clearance for acute lung injury models that are caused by infection. Electronic searches of MEDLINE, Embase, BIOSIS Previews, and Web of Science will be constructed and reviewed by the Peer Review of Electronic Search Strategies (PRESS) process. Search results will be screened independently and in duplicate. Data from eligible studies will be extracted, pooled, and analyzed using random effects models. Risk of bias will be assessed using the Cochrane risk of bias tool, and individual study reporting will be assessed according to the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines.DiscussionThe results of this systematic review will comprehensively summarize the safety and efficacy of MSC therapy in preclinical models of acute lung injury. Our results will help translational scientists and clinical trialists to determine whether sufficient evidence exists to perform a human clinical trial. These results may also guide future acute lung injury preclinical and clinical research.

Highlights

  • Acute respiratory distress syndrome (ARDS) in humans is caused by an unchecked proinflammatory response that results in diffuse and severe lung injury, and it is associated with a mortality rate of 35 to 45%

  • Our results will help translational scientists and clinical trialists to determine whether sufficient evidence exists to perform a human clinical trial

  • Protocol and registration The systematic review and meta-analysis protocol was developed through discussions with our scientific research team of clinical (LM, DF) and preclinical research scientists (ML,SM, DS), an information specialist (BS), experts in knowledge synthesis and translation (DM, JG, MM, KS, MA), knowledge users from the Canadian Critical Care Trials Group (CCCTG; JM), the Canadian Stem Cell Network (MR), and the Canadian Council on Animal Care (CCAC; GG), and the Canadian Critical Care Translational Biology Group(CCCTBG; http://www.ccctbg.ca)

Read more

Summary

Introduction

Acute respiratory distress syndrome (ARDS) in humans is caused by an unchecked proinflammatory response that results in diffuse and severe lung injury, and it is associated with a mortality rate of 35 to 45%. Acute respiratory distress syndrome (ARDS) is a devastating clinical condition caused by an acute, diffuse, and severe lung injury that requires management in the intensive care unit. Injury to the epithelium and endothelium is largely caused by a complex and exaggerated production of many inflammatory mediators (for exampleTNF-α, IL-6) [8,11,12]. These host processes are likely responsible for the high rates of morbidity and mortality of this illness

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.