Abstract
We investigated the efficacy of bone marrow (BM) processing by an automated large-volume apheresis procedure (6 x original BM volume) in 10 paediatric and adult patients undergoing BM harvesting before myeloablative therapy. Volume-dependent kinetics during apheresis were analyzed by sequential collection of processed cells into a six-fold collection bag system with consecutive analysis of the single bags. BM processing resulted in an 83.3% (+/- 21) recovery of mononuclear cells (MNC), a 97.9% (+/- 1.1) reduction of erythrocytes (RBC) and a 87.7% (+/- 2.9) volume reduction. To determine volume-dependent kinetics of haematopoietic progenitor cell (HPC) enrichment during apheresis, leukocytes (WBC), mononuclear cells (MNC), CD34 cells and colony-forming cells (CFU-GM) were serially quantitated in subsequent collection bags. Large-volume BM processing significantly enhanced absolute yields of CD34+ cells (mean: 4.01 (+/- 2.81) x 10(6)/kg bw) and CFU-GM (mean: 1.92 (+/- 1.47) x 10(4)/kg bw) compared with the standard procedure (3 x BM volume) by 26.9% (+/- 10.9) and 27.2% (+/- 11.6), respectively. We concluded that large-volume apheresis for BM processing is an efficient technique significantly improving the yields of haematopoietic progenitor cells (HPC) without any relevant changes in the purity of the final product. Moreover, sequential collection and analysis of HPC represents a good model to investigate the volume-dependent kinetics and efficacy of BM processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.