Abstract

Thrombin, a crucial enzyme in the blood coagulation, has been a target for antithrombotic therapy. Orally active thrombin inhibitors would provide effective and safe prophylaxis for venous and arterial thrombosis. We conducted optimization of a highly efficacious benzamidine-based thrombin inhibitor LB30812 (3, K(i) = 3 pM) to improve oral bioavailability. Of a variety of arylamidines investigated at the P1 position, 2,5-thienylamidine effectively replaced the benzamidine without compromising the thrombin inhibitory potency and oral absorption. The sulfamide and sulfonamide derivatization at the N-terminal position in general afforded highly potent thrombin inhibitors but with moderate oral absorption, while the well-absorbable N-carbamate derivatives exhibited limited metabolic stability in S9 fractions. The present work culminated in the discovery of the N-carboxymethyl- and 2,5-thienylamidine-containing compound 22 that exhibits the most favorable profiles of anticoagulant and antithrombotic activities as well as oral bioavilability (K(i) = 15 pM; F = 43%, 42%, and 15% in rats, dogs, and monkeys, respectively). This compound on a gravimetric basis was shown to be more effective than a low molecular weight heparin, enoxaparin, in the venous thrombosis models of rat and rabbit. Compound 22 (LB30870) was therefore selected for further preclinical and clinical development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call