Abstract

AbstractA planar Savart water sheet uniformly seeded with small air bubbles in a large surface concentration is studied as a model experiment of the so-called ‘effervescent’ atomization process. This two-dimensional setup allows for a quantitative observation of all the steps of the sheet’s disintegration into a collection of disjointed droplets. The bubbles are heterogeneous nucleation sites which puncture the sheet with holes. The dynamics of the opening of holes competes with the simultaneous nucleation rate of new holes in a statistically stationary fashion. The liquid constituting the sheet is then transiently concentrated in a web of ligaments of various lengths and diameters, at the junction between adjacent holes. Their breakup produces the final spray. We provide a complete description of the ligament web statistics when nucleation is synchronous, and we show that the drop size dispersion from the breakup of a single ligament is responsible for the shape of the overall spray drop size distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.