Abstract

Tuberculosis remains a big threat, with 1.6 million deaths in 2017, including 0.3 million deaths among patients with HIV. The risk of developing active disease increases considerably during an HIV coinfection. Alveolar macrophages are the first immune cells to encounter the causative agent Mycobacterium tuberculosis, but during the granuloma formation other cells are recruited in order to combat the bacteria. Here, we have investigated the effect of efferocytosis of apoptotic neutrophils by M. tuberculosis and HIV-coinfected macrophages in a human in vitro system. We found that the apo­ptotic neutrophils enhanced the control of M. tuberculosis in single and HIV-coinfected macrophages, and that this was dependent on myeloperoxidase (MPO) and reactive oxygen species in an autophagy-independent manner. We show that MPO remains active in the apoptotic neutrophils and can be harnessed by infected macrophages. In addition, MPO inhibition removed the suppression in M. tuberculosis growth caused by the apoptotic neutrophils. Antimycobacterial components from apoptotic neutrophils could thus increase the microbicidal activity of macrophages during an M. tuberculosis/HIV coinfection. This cooperation between innate immune cells could thereby be a way to compensate for the impaired adaptive immunity against M. tuberculosis seen during a concurrent HIV infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call