Abstract

The medial olivocochlear efferent fibers control outer hair cell responses and inhibit the cochlear-amplifier gain. Measuring efferent function is both theoretically and clinically relevant. In humans, medial efferent inhibition can be assayed via otoacoustic emissions (OAEs). OAEs arise by two fundamentally different mechanisms-nonlinear distortion and coherent reflection. Distortion and reflection emissions are typically applied in isolation for studying the efferent inhibition. Such an approach inadvertently assumes that efferent-induced shifts in distortion and reflection emissions provide redundant information. In this study, efferent-induced shifts in distortion and reflection emissions (click-evoked and stimulus frequency OAEs) were measured in the same subjects-5- to 10-yr-old children. Consistent with the OAE generation theory, efferent-induced shifts in distortion and reflection emissions did not correlate, whereas the two reflection emission shifts correlated. This suggests that using either OAE types provides fragmented information on efferent inhibition and highlights the need to use both distortion and reflection emissions for describing efferent effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call