Abstract

Exposure to ultrafine airborne particulate matter (PM1.0) poses a significant risk to human health and well-being. Examining the effect of submicron water droplets on the removal of ultrafine PM is timely and important for mitigating indoor ultrafine PM, which is difficult to filter out from incoming air. In this study, submicron water droplets were made by using a nanoporous membrane and an ultrasonic module of a commercial household ultrasonic humidifier (UH) for effectual ultrafine PM removal. The effect of water droplet size on indoor PM removal was experimentally investigated. Variations in the normalized PM concentration, removal efficiency and deposition constants were evaluated by analyzing the temporal variation in PM concentration inside a test chamber. The measured PM deposition constants were compared with the results of other previous studies. As a result, submicron water droplets of 800 nm in mean diameter were generated by ultrasonic module combined passive nanoporous membrane, and PM1.0 concentration decreased by 30% in the initial 30 min. Compared with micron-sized water droplets, PM1.0 removal efficiency improved by approximately two times higher. Moreover, the substitution of the experimental results into a theoretical model ascertained that PM collection efficiency is increased by approximately 103 levels as the size of water droplets decreases. These results would be utilized in the development and implementation of effective strategies for indoor PM removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call