Abstract
High alkalinity in peroxide bleaching has traditionally been achieved using sodium hydroxide and sodium silicate. In the present work, partial and total substitution of traditional sodium-based peroxide bleaching auxiliary chemicals with a highly pure magnesium hydroxide-based bleaching additive was studied on two high-brightness mechanical pulp types from Norwegian spruce (Picea abies): pressure groundwood and thermomechanical pulp. Peroxide bleaching with 3.0% charge was carried out on both pulps to a given brightness level. The bleached pulp was studied with respect to electrical conductivity, zeta potential, and water retention value. The bleaching filtrate was measured for total organic carbon content, biological and chemical oxygen demand, cationic demand, extractives content, and turbidity. The main results from this study were that the cationic demand and electrical conductivity of the bleaching filtrate were significantly lowered for both pulps when a magnesium-based bleaching process was used. At the same time, the zeta potential of the dilute pulp suspension was only slightly affected. Magnesium hydroxide-based peroxide bleaching seems to increase the water retention value of the pulp, especially on fines-rich pressure groundwood, predicting a good strength potential of the pulp. The bleaching filtrate from the magnesium hydroxide-based process was significantly cleaner in all categories measured, which indicates that this is an environmentally sound concept.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.