Abstract

It is accepted that accurate estimation of risk of population extinction, or persistence time, requires prediction of the effect of fluctuations in the environment on population dynamics. Generally, the greater the magnitude, or variance, of environmental stochasticity, the greater the risk of population extinction. Another characteristic of environmental stochasticity, its colour, has been found to affect population persistence. This is important because real environmental variables, such as temperature, are reddened or positively temporally autocorrelated. However, recent work has disagreed about the effect of reddening environmental stochasticity. Ripa and Lundberg (1996) found increasing temporal autocorrelation (reddening) decreased the risk of extinction, whereas a simple and powerful intuitive argument (Lawton 1988) predicts increased risk of extinction with reddening. This study resolves the apparent contradiction, in two ways, first, by altering the dynamic behaviour of the population models. Overcompensatory dynamics result in persistence times increasing with increased temporal autocorrelation; undercompensatory dynamics result in persistence times decreasing with increased temporal autocorrelation. Secondly, in a spatially subdivided population, with a reasonable degree of spatial heterogeneity in patch quality, increasing temporal autocorrelation in the environment results in decreasing persistence time for both types of competition. Thus, the inclusion of coloured noise into ecological models can have subtle interactions with population dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call