Abstract

Passive and active hypoxia could be used as a tool during a transitional phase to maintain the effects of warm-up and optimize athletic performance. Our purpose was to evaluate and compare the effects of four different re-warm-up strategies, i.e. rest in normoxia (RN) at FiO2 = 20.9%, rest in hypoxia (RH) at FiO2 = 15%, active (5 minutes dryland-based exercise circuit) in normoxia (AN) and active in hypoxia (AH), during the transitional phase, on subsequent 100 m maximal swimming performance. Thirteen competitive swimmers (n = 7 males; n = 6 females; age: 15.1±2.1 years; height: 164.7±8.8 cm; weight: 58.1±9.7 kg; 100 m season’s best time 72.0±11.8 s) completed a 20-minute standardized in-water warm-up followed by a 30-minute randomized transitional phase and 100 m freestyle time trial. Compared to AH (73.4±6.2 s), 100 m swim time trials were significantly (p = 0.002; η2 = 0.766) slower in RN (75.7±6.7 s; p = 0.01), AN (75.2±6.7 s; p = 0.038) and RH (75.0±6.4 s; p = 0.009). Moreover, compared to AH (36.3±0.4ºC), tympanic temperature was significantly lower (p<0.001; η2 = 0.828) at the end of the transitional phase in passive conditions (RN: 35.9±0.6; p = 0.032; RH: 36.0±0.4; p = 0.05). In addition, countermovement jump height at the end of the transitional phase was significantly higher in active than in passive conditions (p = 0.001; η2 = 0.728). A dryland-based circuit under hypoxia could be useful to swimmers, once it has attenuated the decline in tympanic temperature during a 30-minute transitional phase after warm-up, improving 100 m swimming performance in young amateur swimmers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call