Abstract

Schizophrenia is a severe and debilitating psychiatric disorder believed to have neurodevelopmental origins. Several studies have associated energy metabolism dysfunction with the disorder, mostly related to glycolysis alterations. Glucose is the obligatory energy substrate of the brain and glycolysis is the first step for its metabolism. This takes place predominantly in glial cells, astrocytes and oligodendrocytes, whereas neurons present a predominant oxidative profile. Thus, glial cells generate either lactate or pyruvate to neurons for ATP production. In addition, some aspects of schizophrenia may reflect an advanced aging phenotype with effects on various neural cell types at different stages of the disease. Given the role of glial cells in brain energy metabolism, the association of glycolysis dysfunction and the accelerated aging of neuronal cells in schizophrenia, studies focusing on those aspects can yield important insights into the causes and implications of the disorder. In turn, this may lead to novel therapeutic strategies for improved treatment of individuals suffering with this disorder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call