Abstract
This paper provides an overview of the effects of Geometric Twist on Aircraft performance by introducing a washout condition in an aircraft wing. This condition results in an effective Angle of Attack at the wingtip that is lower than the Angle of Attack at the wing root. Using CFD analysis, the variation of aircraft performance factors such as lift, drag coefficients, and aerodynamic efficiency is calculated for different Twist angles. A plot of lift and drag coefficients at varying Angle of Attack angles has been generated based on these analyses. These results illustrate the advantages of wing twist variation, particularly at higher angles of attack. One significant advantage of Geometric Twist is that it causes stall conditions to first occur at the wing root, providing a signal to the pilot to control the aircraft before the stall reaches the wingtip. This ensures the effectiveness of control surfaces, such as Ailerons and Flaps, located at the wing trailing edge. A comparison is made between the lift, drag coefficients, and aerodynamic efficiency of twisted wings and untwisted wings with identical parameters. While twisting the wingtip yields favourable results at higher Angles of Attack (AOA) compared to an untwisted wing, the aerodynamic efficiency of the wings decreases at lower AOA. However, applying the twist angle at high angles of attack, such as 10, 12.5, 15, and 20 degrees, leads to an increase in aerodynamic efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.