Abstract
Using an inosine-producing mutant of Escherichia coli, the contributions of the central carbon metabolism for overproducing inosine were investigated. Sodium gluconate instead of glucose was tested as a carbon source to increase the supply of ribose-5-phosphate through the oxidative pentose phosphate pathway. The edd (6-phosphogluconate dehydrase gene)-disrupted mutant accumulated 2.5 g/l of inosine from 48 g/l of sodium gluconate, compared with 1.4 g/l of inosine in the edd wild strain. The rpe (ribulose phosphate 3-epimerase gene)-disrupted mutant resulted in low cell growth and low inosine production on glucose and on gluconate. The disruption of pgi (glucose-6-phosphate isomerase gene) was effective for increasing the accumulation of inosine from glucose but resulted in low cell growth. The pgi-disrupted mutant accumulated 3.7 g/l of inosine from 40 g/l of glucose when 8 g/l of yeast extract was added to the medium. Furthermore, to improve effective utilization of adenine, the yicP (adenine deaminase gene)-disrupted mutant was evaluated. It showed higher inosine accumulation, of 3.7 g/l, than that of 2.8 g/l in the yicP wild strain when 4 g/l of yeast extract was added to the medium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.