Abstract

Y2.6−xCa0.4+xZrxV0.2Fe4.8−xO12 (Zrx:YCaVIG) ferrite materials have been prepared by an oxide process. The phase formation and microstructure were analyzed by X-ray diffraction and scanning electron microscopy, respectively. The effects of Zr4+ substitution on phase compositions, sintering properties, microstructures and electromagnetic properties were investigated. The results indicate that all the sintered specimens with different Zr4+ contents show a single garnet structure. The addition of ZrO2 can gradually increase the lattice constant, and lower the sintering temperature and the theoretical density. With the increase of Zr4+ content, the dielectric loss (tanδε) and coercivity (Hc) decrease and then slightly increase, which is due to the variation of the microstructure. But the saturation magnetization (4πMs) shows the opposite variation compared to the former two properties. However, the dielectric constant (εr) remains stable and remanence (Br) monotonically declines. Finally, the specimen of Y2.3Ca0.7Zr0.3V0.2Fe4.5O12 sintered at 1350° possesses the optimum electromagnetic properties: εr=14.8, tanδε=1.35×10−3, 4πMs=1638Gs, Br=596Gs, Hc=0.75Oe and ΔH (ferromagnetic resonance linewidth)=66Oe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.