Abstract

A mechanistic model was applied to study the influence of diurnal vertical migration (DVM) of planktonic crustaceans on the succession and composition of the phytoplankton community. While zooplankton was restricted to only one functional group, the phytoplankton community was divided into two functional groups which are distinguished by their maximum growth rates and vulnerability to zooplankton grazing. DVM causes a pulsed grazing regime and may also entail a corresponding reduction of the cumulative daily rates of ingestion and losses of zooplankton. To study the relative importance of these two mechanisms of DVM to phytoplankton we performed a scenario analysis consisting of 5 different scenarios. The results show that DVM has a strong influence on the phytoplankton community. Well edible algae benefit during the first 3–4 weeks of summer stratification by reduced daily grazing. The typical shift from small, well edible algae to larger, poorly or non-edible phytoplankton is distinctly delayed. Under the assumption of unchanged daily grazing, however, a pulsed grazing regime has nearly no influence on the resulting phytoplankton composition. As similar effects are also found for completely non-edible phytoplankton, indirect effects via phosphorus availability must be assumed. Thus, the scenario analysis reveals that the observed effects of DVM on phytoplankton can be explained by a combination of two mechanisms: (1) reduction of the daily zooplankton grazing, and (2) changed assimilation and remineralisation of phosphorus. Surprisingly and in contradiction to earlier reports there is almost no DVM effect on phytoplankton due to the sole action of a pulsed grazing regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call