Abstract

Hard PZT (PZT4)-based composites embedded by ZnO nanoneedles (denoted as PZT/ZnOn) were fabricated by a solid state sintering technique. The characteristic diffraction peaks of the perovskite PZT and ZnO phases were identified from the studied composites, indicating the retention of ZnOn. With increasing ZnOn content, the grain size of the composites was reduced gradually. In contrast with the pure PZT, the PZT/ZnOn composites possessed more excellent mechanical properties, while the piezoelectric properties were reduced by a certain extent. The best mechanical properties of PZT/ZnOn composites were obtained by sintering at 1,150 °C with 1.5 wt% ZnO nanoneedles addition: fracture toughness K IC ~ 2.04 MPa m1/2, flexural strength σ f ~ 105.44 MPa, compressive strength σ c ~ 543.89 MPa. The piezoelectric properties of the PZT/ZnOn composites were found to be lower than that of the pure PZT with dielectric permittivity e r of 768–893, piezoelectric coefficient d 33 of 240–260pC/N, mechanical quality factor Q m of 340–650 and planar electromechanical coupling k p of 0.5–0.55.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.